Что нужно знать для создания роботов

Постепенно в повседневную жизнь входят высокие технологии: «умный дом», интерактивные художественные выставки, боты-собеседники. Неудивительно, что обучать азам программирования и роботостроения начинают еще до школы. Центры робототехники и инженерные кружки открываются все чаще. По разным данным, в России действуют около 400 кружков, связанных с робототехникой и IT, официальной статистики пока еще нет. И это число будет только расти.

От кружка юных инженеров и радиолюбителей до секции «Робототехника»

Робототехника встроилась в образовательный процесс органично и почти без шума. В 2016 году роботы мигают светодиодами на всех уровнях учебных учреждений: от садов до университетов, но больше всего – в школе. Робототехника считается инструментом для углубленного изучения таких дисциплин, как информатика, физика и технология. Поэтому постичь начала роботостроения школьники могут не только в кружках, но также в школах и вузах, где роботы все больше внедряются в учебный процесс.

Кружковая система дополнительного образования особенно хорошо знакома людям старшего поколения, из стран бывших союзных республик СССР. Бесплатное советское образование было щедро дополнено внешкольными занятиями на базе дворцов и домов пионеров (по данным Википедии, 1971 году действовало 4 400 «дворцов»).

Развивали пространственное мышление у будущих инженеров кружки технического моделирования и конструирования, радиомастерские. Школьники «с нуля» создавали модели автомобилей и самолетов, учились работать с оборудованием (токарные станки, выжигательные аппараты, лобзики и напильники), знакомились с принципами работы электричества.

Советская система образования по инженерно-техническим специальностям, частью которой были «кружки», считалась одной из лучших в мире. Сегодня же принято говорить больше о минусах образования в России, а лидирующие позиции в сфере технологий занимают американские и азиатские учебные заведения.

Вместе с распадом СССР в упадок пришла и культура дополнительного образования и кружков. Кружки стали платными, а тематика потеряла в разнообразии: популярными стали спортивные секции, танцевальные и художественные школы. Как повлияло такое изменение в учебном меню целого поколения детей, можно судить уже сейчас. Выпускники вузов с дипломами о гуманитарном образовании не находят работу, а предприятия днем с огнем ищут инженерные кадры.

В 2000-х годах все более заметным становится интерес к робототехнике в образовании. С 2002 года в России проводятся внутренние и Международные состязания роботов. В это же время формируется Российская ассоциация образовательной робототехники (РАОР). С 2008 года на основе РАОР работает Всероссийский учебно-методический центр образовательной робототехники (ВУМЦОР) – организация поставляет методички и снабжает всех желающих правовой информацией и рекомендациями для открытия робототехнического кружка.

Также с 2008 года фонд Олега Дерипаски «Вольное дело» запустил программу «Робототехника», которая поддерживает образовательные и соревновательные проекты.

В 2014 году о роботах заговорили на государственном уровне. В АСИ (Агентство стратегических инициатив, учредитель – Правительство Российской Федерации) анонсировали Национальную техническую инициативу. Глобальная идея НТИ – к 2035 году вывести Россию на конкурентных уровень на рынке высоких технологий. Одним из направлений программы стала поддержка и популяризация технического образования.

Вместе с популяризацией робототехники в образовательной среде появилось понятие STEM (или STEAM). Это направление в мировом образовательном процессе, его характеризует междисциплинарный подход к обучению. Ключевые дисциплины зашифрованы в аббревиатуре: Science, Technology, Engineering, Art (не всегда), Math. Система призвана развивать будущих инженеров и робототехников.

При государственной поддержке открываются не просто кружки, но и целые технопарки — детские центры, объединяющие кружки по разным техническим направлениям. Пока технопарков не много. В мае в Москве заработал первый детский центр при “Мосгормаш” , в конце сентября открылся технопарк “Кванториум”. В регионах также собираются открывать технопарки. Они должны появиться в 17 регионах: в Мордовии, Татарстане, Чувашии, Алтайском крае и в других.

От конструктора к микросхеме

Несмотря на то, что роботы включены в занятия для детей с дошкольного возраста, главную роль в становлении самых маленьких будущих инженеров играет не электроника, а творчество. В системе STEM образования в занятиях для дошкольников на первом плане – свобода мыслить и создавать. Поэтому в кружках для детей до 6 лет активно используют простые конструкторы и кубики.

Основная масса кружков по робототехнике ориентирована на детей возраста начальной и средней школы.

“Как правило, в программу подобных детских курсов входит знакомство со схемотехникой, основами программирования и робототехники. Разница между кружками состоит в их задаче: ребенок либо развлекается, либо учится. Исходя из этого и подбирается методика обучения и технологии. Глобальная цель РОББО Клуба – вырастить поколение молодых инноваторов, которые были бы конкурентоспособны не только на российском рынке, но и в мире. Поэтому наш курс рассчитан на работу с детьми разного возраста: с дошкольниками мы создаем анимационные программы и классические компьютерные игры (Pac-man, Arkanoid), программируем роботов на выполнение различных задач, со школьниками занимаемся программированием на «взрослых» языках, 3D-моделированием, 3D-конструированием и 3D-печатью. Так, ребенок приходит к нам только с навыками чтения, а уходит с напечатанным на 3D-принтере, собранным и запрограммированным самостоятельно роботом”, — поясняет Павел Фролов, продюсер детского робототехнического проекта для образования «РОББО»

Робототехника дополняет пройденный материал на уроках технологии, физики и математики. Дмитрий Спивак, директор санкт-петербургского кружка робототехники для детей Robx считает, что именно на кружковых занятиях ребенок может применить знания механики и электродинамики, вникнуть в текстовые языки программирования (например, С). “В средней школе наши подопечные начинают знакомство с Arduino, более сложные программами для 3D моделирования — OpenSCAD, параметрическим моделированием, где дети описывают фигуры кодом” — говорит Дмитрий.

Образовательная робототехника, как правило, начинается с конструкторов Lego. В наборах соблюдается баланс конструирование-программирование. После того, как ребенок освоит азы, он может углубиться в одно из направлений, более глубоко изучать программирование и конструирование. На занятиях с уклоном в программирование ученики работают с разными языками и программами для программирования, занимаются 3D моделированием. Конструкторские кружки готовят будущих инженеров: здесь дети самостоятельно разрабатывают форму и “начинку” робота.

Читайте также:  Отражающий экран для бани

Lego и Ко

Рынок STEM и роботизированных конструкторов довольно разнообразен. Большинство производителей охватывает все возрастные категории, от наборов для дошкольного образования до модулей с 4-ядерными процессорами для средних и старших школьников.

Мировым и российским лидером в сфере образовательной робототехники является дочерняя компания холдинга LEGO Group — LEGO Education. Датскому бренду принадлежат не только наборы и методические разработки, но и сеть специализированных детских центров, а также ЛЕГО Академия, где обучение могут пройти педагоги. На данный момент 16 центров дополнительного образования являются официальными партнерами Lego Education Afterschool Programs в России.

Lego Education работает с 1980 года. В линейке бренда как конструкторы без электронной составляющей (Lego Простые механизмы, Первые конструкции), наборы с микропроцессором и датчиками для изучения робототехники в младшей школе (Lego WeDo) так и наборы для демонстрации научных принципов в средней школе (Lego Технология и физика) и наборы легендарной серии MINDSTORMS.

Похожая на Lego, но гораздо менее известная американская компания Pitsco была основана в 1971 году тремя преподавателями. Наборы для младшего возраста Elementary STEM представлены скорее творческими общеразвивающими игрушками – летучие змеи, ракеты. Роботы включены в направление Tetrix – роботизированные металлические конструкторы, широко известные в России. Металлические детали делают такие наборы универсальными, Tetrix совместим с контроллером Lego MINDSTORMS. Роботы на основе Tetrix часто участвуют в соревнованиях, в том числе и в студенческих категориях.

Открытая платформа Arduino в отличие от прочих уникальная плата с программной оболочкой. Это делает Arduino универсальной основой для робототехнических конструкций любого уровня в рамках детского образования. На основе Arduino создано несколько брендов робототехнических наборов-конструкторов. Платформу можно приобрести отдельно. Минус платформы в том, что конструирование достаточно сложное, подразумевает работу ребенка с паяльником.

Отечественные наборы представлены двумя заметными на рынке брендами – ТЕХНОЛАБ и Амперка. Для ТЕХНОЛАБ разработаны методички при поддержке специалистов факультета «Робототехника и комплексная автоматизация» МГТУ им Н.Э.Баумана. Продукты ТЕХНОЛАБ — тематические и возрастные модули. В каждом модуле – несколько робототехнических наборов. Такой «оптовый» подход предполагает высокую цену конструкторов: от 93 тыс. рублей за модуль для детей 5-8 лет и до 400 тыс. рублей за модуль воздушных роботов.

Амперка – стартап 2010 года, основанный на платформе Arduino. Продукты Амперки — наборы под игровыми названиями: «Матрешка», «Малина», «Электроника для чайников» и т.д. Также на сайте Амперки можно купить отдельные комплектующие – платы Arduino, датчики, коммутаторы.

Корейский бренд Robotis предлагает робототехнические наборы для каждого уровня. Это пластмассовые роботы для начальной школы (Robotis Play, Robotis Dream) и человекоподобные роботы на основе сервомоторов Robotis Bioloid.

Корейские производители HunaRobo и RoboRobo акцентируют внимание на конструкторах для детей младшего и среднего возраста. Наборы корейских брендов включают базовые элементы: материнскую плату, двигатель и редуктор, RC приемник и пульт управления.

VEX Robotics — частная компания с фокусом на мобильную робототехнику, базируется в США. Бренд принадлежит компании Innovation First, Inc., которая разрабатывает электронику для автономных наземных роботов. Бренд поделен на два направления – серия VEX IQ для начального уровня и VEX EDR– платформа для продвинутых учеников. Мобильные программируемые роботы VEX на пульте управления ориентированы на соревнования и навыки программирования.

Вместо заключения

Широкий ассортимент робототехнических обучающих платформ, государственная поддержка и мода на роботов только встраивают робототехнику в образование. Инженерные и робототехнические кружки и занятия скорее исключение, особенно в регионах. Однако, уже сегодня сотни тысяч детей получили возможность учиться дополнительно по инженерным и IT направлениям. И это число в ближайшее время будет только расти — СМИ рапортуют о новых технопарках и кружках, а власти — о готовности поддержать подобные инициативы.

Хочется верить, что усиленная интеграция дополнительного технического образования в итоге даст толчок к формированию большего количества технических специалистов высокого уровня в будущем. Кружковое движение стремится к широкому охвату — программы робототехнических занятий построены так, чтобы заинтересовать любого ребенка. Основные технические законы и понятия становятся доступнее. Занятия робототехникой как минимум расширяют кругозор, как максимум — обеспечат будущее инженерными и техническими кадрами. Верим в максимум!

Роботизация и автоматизация становятся всё востребованнее, и многим хотелось бы научиться создавать подобные системы и устройства. Но с чего начать, как освоить азы? Мы сделали для вас небольшую подборку русскоязычных и англоязычных YouTube-каналов с учебными материалами и методическими пособиями по робототехнике.

Канал ведет инженер, который рассказывает о своем опыте в конструировании из подручных материалов разных устройств, как правило автоматизированных. Речь идет об электронике, робототехнике, инструментах и прикладных экспериментах. Довольно интересный и доступно изложенный материал, из которого можно почерпнуть для себя что-то новое.

Канал довольно популярного магазина «Амперка». Посвящен электронике и робототехнике. Здесь рассказывается о платформах Arduino, Raspberry Pi и Iskra JS, с помощью которых можно создавать роботов и автоматизированные системы (типа «умный дом») даже с минимальным набором знаний.

Интересный канал, позволяющий получить множество знаний в разных областях от ведущих вузов. В том числе содержит вводные материалы лекций по робототехнике, к которым можно получить доступ в рамках проекта «Универсариум».

На канале представлены доступные уроки по робототехнике, программированию, а также интересные материалы и освещение событий, связанных с роботами. Автор — кандидат физико-математических наук и тренер сборной России по робототехнике.

Содержит учебные материалы по робототехнике для начинающих. Создание робота своими руками с нуля. От простейших экземпляров до вычислительных машин на процессорах и микроконтроллерах. Каждый материал содержит описание робота, инструкция по его созданию и список необходимых элементов.

Читайте также:  Сколько стоит положить керамогранит за квадратный метр

На канале вы найдёте обучающие уроки по робототехнике, в частности, по программированию EV3. Первый сезон лекций выложен полностью. Материал подан доступно для начинающих. Планируется 3 сезона.

На канале есть множество интересной и полезной информации по созданию роботов, материалы с места событий, выставок и чемпионатов, а также обучающие материалы, в том числе практические задания к курсу по робототехнике.

Ряд довольно интересных обучающих и обозревательных материалов по робототехнике от сотрудника Оренбургского президентского кадетского колледжа. Здесь вы можете получить начальные знания, которые пригодятся любому человеку, интересующемуся робототехникой.

Уроки по робототехнике для начинающих, и не только для детей. Пошаговые доступные инструкции по сборке роботов из LEGO, на основе Arduino и т.д. Содержит также много других интересных материалов по теме.

Обучающие материалы по робототехнике, а также видео и новинки из этой области. Автор имеет несколько наград и патентов в этой сфере. Преподает свой собственный курс «Как стать инженером робототехники» для студентов и аспирантов.

Очень интересный курс лекций по робототехнике — не для новичков. Охватывает многие интересные аспекты и содержит множество материалов в виде лекций из этой и смежных областей.

Серия обучающих уроков по платформе Arduino. Довольно интересное и несложное изложение материала. Уроки подходят для новичков.

Серия обучающих материалов по Arduino и базовому программированию для новичков. Поможет делающим первые шаги познакомиться с платформой и обучиться азам.

Обучающие уроки по электронике, робототехнике на основе Arduino и многое другое. Содержащие интересные материалы из категории «сделай сам».

Сборник лекций с говорящим названием от Стэндфордского университета. Не для начинающих.

Хотя сегодня многие интересуются робототехникой, однако полезных обучающих видео в сети на удивление немного. Так что делитесь в комментариях ссылками для дополнения подборки.

Робототехники олицетворяют собой сочетание противоположностей. Как специалисты, они искушены в тонкостях своей специализации. Как универсалы, они способны охватить проблему в целом в той степени, что позволяет имеющаяся обширная база знаний. Предлагаем вашему вниманию интересный материал на тему умений и навыков, которые необходимы настоящему робототехнику.

А кроме самого материала также комментарии одного из наших робо-экспертов, куратора екатеринбургского хакспейса MakeItLab, Олега Евсегнеева.

Инженеры-робототехники, как правило, попадают в две категории специалистов: думающих (теоретиков) и делающих (практиков). Это означает, что робототехники должны отличаться хорошим сочетанием двух противоположных стилей работы. «Склонные к исследованиям» люди вообще любят решать проблемы, думая, читая и изучая. С другой стороны, специалисты-практики любят решать проблемы лишь «испачкав руки», можно так сказать.

В робототехнике нужен тонкий баланс между напряженными исследованиями и расслабленной паузой, то есть работа над реальной задачей. В представленный перечень попали 25 профессиональных умений, сгруппированных в 10 существенных для роботостроителей навыков.

1. Системное мышление

Один из менеджеров проекта однажды заметил, что многие, связанные с робототехникой люди, оказываются впоследствии менеджерами проектов или системными инженерами. В этом есть особый смысл, так как роботы являются очень сложными системами. Занимающийся роботами специалист должен быть хорошим механиком, электронщиком, электриком, программистом и даже обладать познаниями в психологии и когнитивной деятельности.

Хороший робототехник в состоянии понять и теоретически обосновать, как совместно и слаженно взаимодействуют все эти разнообразные системы. Если инженер-механик может вполне обоснованно сказать: «это не моя работа, тут нужен программист или электрик», то робототехник должен хорошо разбираться во всех этих дисциплинах.

Комментарий Олега Евсегнеева: Вообще, системное мышление является важным навыком для всех инженеров. Наш мир – одна большая сверхсложная система. Навыки системной инженерии помогают правильно понять, что и как связано в этом мире. Зная это, можно создавать эффективные системы управления реальным миром.

2. Мышление программиста

Программирование является довольно важным навыком для робототехника. При этом не имеет значения, занимаетесь ли вы низкоуровневыми системами управления (используя лишь MATLAB для проектирования контроллеров) или являетесь специалистом по информатике, проектирующим высокоуровневые когнитивные системы. Занимающиеся роботами инженеры могут быть привлечены к работе по программированию на любом уровне абстракции. Основное различие между обычным программированием и программированием роботов заключается в том, что робототехник взаимодействует с оборудованием, электроникой и беспорядком реального мира.

Сегодня используется более 1500 языков программирования. Несмотря на то, что вам явно не нужно будет учить их все, хороший робототехник обладает мышлением программиста. А они будут комфортно чувствовать себя при изучении любого нового языка, если вдруг это потребуется. И тут мы плавно переходим к следующему навыку.

Комментарий Олега Евсегнеева: Я бы добавил, что для создания современных роботов требуется знание языков низкого, высокого и даже сверхвысокого уровня. Микроконтроллеры должны работать очень быстро и эффективно. Чтобы этого достичь, нужно углубляться в архитектуру вычислительного устройства, знать особенности работы с памятью и низкоуровневыми протоколами. Сердцем робота может быть тяжелая операционная система, например, ROS. Здесь уже может понадобиться знание ООП, умение пользоваться серьезными пакетами машинного зрения, навигации и машинного обучения. Наконец, чтобы написать интерфейс робота в веб и связать его с сетью интернет, неплохо будет научиться скриптовым языкам, тому же python.

3. Способность к самобучению

О робототехнике невозможно знать все, всегда есть что-то неизвестное, что придется изучать, когда возникнет в том необходимость при реализации очередного проекта. Даже после получения высшего образования по специальности робототехника и нескольких лет работы в качестве аспиранта многие только начинают по-настоящему понимать азы робототехники.

Стремление к постоянному изучению чего-то нового является важной способностью на протяжении всей вашей карьеры. Поэтому использование эффективных лично для вас методов обучения и хорошее восприятие прочитанного помогут вам быстро и легко получать новые знания, когда в этом возникает необходимость.

Читайте также:  Какую лучше делать стяжку в новостройке

Комментарий Олега Евсегнеева: Это ключевой навык в любом творческом деле. С помощью него можно получить другие навыки

4. Математика

В робототехнике имеется не так много основополагающих навыков. Одним из таких основных навыков является математика. Вам, вероятно, трудно будет добиться успеха в робототехнике без надлежащего знания, по крайней мере, алгебры, математического анализа и геометрии. Это связано с тем, что на базовом уровне робототехника опирается на способность понимать и оперировать абстрактными понятиями, часто представляемыми в виде функций или уравнений. Геометрия является особенно важной для понимания таких тем, как кинематика и технические чертежи (которых вам, вероятно, придется много сделать в течение карьеры, включая те, что будут выполнены на салфетке).

Комментарий Олега Евсегнеева: Поведение робота, его реакция на окружающие раздражители, способность учиться – это все математика. Простой пример. Современные беспилотники хорошо летают благодаря фильтру Калмана – мощному математическому инструменту для уточнения данных о положении робота в пространстве. Робот Asimo умеет различать предметы благодаря нейронным сетям. Даже робот-пылесос использует сложную математику, чтобы правильно построить маршрут по комнате.

5. Физика и прикладная математика

Есть некоторые люди (чистые математики, например), которые стремятся оперировать математическими понятиями без привязки к реальному миру. Создатели роботов не относятся к такому типу людей. Познания в физике и прикладной математике важны в робототехнике, потому что реальный мир никогда не бывает таким точным, как математика. Возможность решить, когда результат расчета достаточно хорош, чтобы на самом деле работать – это ключевой навык для инженера-робототехника. Что плавно подводит нас к следующему пункту.

Комментарий Олега Евсегнеева: Есть хороший пример – автоматические станции для полета на другие планеты. Знание физики позволяет настолько точно рассчитать траекторию их полета, что спустя годы и миллионы километров аппарат попадает в точно заданную позицию.

6. Анализ и выбор решения

Быть хорошим робототехником означает постоянно принимать инженерные решения. Что выбрать для программирования — ROS или другую систему? Сколько пальцев должен иметь проектируемый робот? Какие датчики выбрать для использования? Робототехника использует множество решений и среди них почти нет единственно верного.

Благодаря обширной базе знаний, используемой в робототехнике, вы могли бы найти для себя более выгодное решение определенных проблем, чем специалисты из более узких дисциплин. Анализ и принятие решений необходимы для того, чтобы извлечь максимальную пользу из вашего решения. Навыки аналитического мышления позволят вам анализировать проблему с различных точек зрения, в то время как навыки критического мышления помогут использовать логику и рассуждения, чтобы сбалансировать сильные и слабые стороны каждого решения.

Комментарий Олега Евсегнеева: Анализ – это способность разбирать интересующий предмет на кирпичики. Способность достать до сути механизма или явления. Без этого невозможно даже правильно составить задание на проектирование робота. А ошибки на этом этапе часто бывают фатальными для всей идеи.

7. Хорошие коммуникационные способности

Специалисту по робототехнике с его универсальными познаниями часто приходится объяснять свои концепции неспециалистам в какой-либо области. Например, вам может быть придется объяснять инженеру-механику проблемы высокоуровневого программирования или специалисту в области вычислительных систем недостатки механической конструкции. Хороший робототехник выполняет роль канала связи между различными дисциплинами. Поэтому коммуникативные навыки имеют жизненно важное значение. Очень важно уметь эффективно использовать свои речевые и письменные навыки. Также большим плюсом будут хорошие навыки в обучении.

Комментарий Олега Евсегнеева: Прямое общение – часто самый быстрый и эффективный способ передать информацию. Замкнутый человек лишается критики со стороны коллег, и тем самым рискует надолго зависнуть на пути неправильного решения. Неправильные решения приводят к провалу проекта, и тем самым сильно бьют по мотивации.

8. Технология проектирования

Быть специалистом в технологии проектирования означает способность проектировать вещи, которые действительно работают. Это также подразумевает способность выяснить, почему что-то работает неправильно и найти возможные решения, требующие навыков в ремонте. Робототехника включает в себя широкий спектр технологий, так что навыки в технологии проектирования означают, что вы можете эффективно изолировать источник проблемы и предложить эффективные решения.

Комментарий Олега Евсегнеева: С самых первых проектов любой робототехник должен стремиться обязательно пройти через этап проектирования. Только так из него может вырасти матерый конструктор, способный эффективно донести все свои идеи до коллектива. Сбор, что называется, на коленке, в случае сложных систем часто приводит к провалу. Современная робототехника основана на высокоточных компонентах, которые требуют тщательной компоновки и продумывания.

9. Решение сложных проблем

Как можно понять, исходя из предыдущих навыков, многие становятся робототехниками, используя свои навыки решения сложных задач. Это относится к предвидению проблем, чтобы скорректировать их прежде, чем они могут возникнуть, и устранить их, если они все-таки возникают.

10. Настойчивость

Наконец, с учетом сложной природы робототехники, настойчивость – это довольно необходимый навык. Это может быть настойчивость в попытках найти решение особенно трудной задачи или упорство в попытке объяснить коллегам сложную проблему. Хороший робототехник будет также поддерживать свое постоянство и надежность, проверяя себя, чтобы быть компетентным и адаптируемым, что и требуется от робототехника.

Комментарий Олега Евсегнеева: Настойчивость тесно связана с мотивацией. Инженер всегда должен уметь отвечать на вопрос «зачем?». Имея ответ и твердую цель, можно добиться решения самых сложных задач, заодно собрав вокруг своей идеи сообщество единомышленников.

А что вы думаете по поводу необходимых навыков для робототехника? Если вам есть что добавить – ждем ваши мысли в комментариях!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *