Что такое конденсатор простыми словами

Если вы рассмотрите печатную плату даже самого простого электронного устройства, то обязательно увидите конденсатор, а чаще всего встретите множество этих элементов. Присутствие этих изделий на различных электронных схемах объясняется свойствами данных радиоэлементов, широким диапазоном функций, которые они выполняют.

В настоящее время промышленность поставляет на рынок конденсаторную продукцию различных видов (рис. 1). Параметры изделий варьируются в широких пределах, что позволяет легко подобрать радиодеталь для конкретной цели.

Рис. 1. Распространённые типы конденсаторов

Рассмотрим более подробно конструкции и основные параметры этих вездесущих радиоэлементов.

Что такое конденсатор?

В классическом понимании конденсатором является радиоэлектронное устройство, предназначенное для накопления энергии электрического поля, обладающее способностью накапливать в себе электрический заряд, с последующей передачей накопленной энергии другим элементам электрической цепи. Устройства очень часто используют в различных электрических схемах.

Конденсаторы способны очень быстро накапливать заряд и так же быстро отдавать всю накопленную энергию. Для их работы характерна цикличность данного процесса. Величина накапливаемого электричества и периоды циклов заряда-разряда определяется характеристиками изделий, которые в свою очередь зависят от типа модели. Параметры этих величин можно определить по маркировке изделий.

Конструкция и принцип работы

Простейшим конденсатором являются две металлические пластины, разделённые диэлектриком. Выступать в качестве диэлектрика может воздушное пространство между пластинами. Модель такого устройства изображена на рис. 2.

Рис. 2. Модель простейшего конденсаторного устройства

Если на конструкцию подать постоянное напряжение, то образуется кратковременная замкнутая электрическая цепь. На каждой металлической пластине сконцентрируются заряды, полярность которых будет соответствоать полярности приложенного тока. По мере накопления зарядов ток будет ослабевать, и в определенный момент цепь разорвётся. В нашем случае это произойдёт молниеносно.

При подключении нагрузки накопленная энергия устремится через нагрузочный элемент в обратном направлении. Произойдёт кратковременный всплеск электрического тока в образованной цепи. Количество накапливаемых зарядов (ёмкость, C) прямо зависит от размеров пластин.

Единицу измерения ёмкости принятоназывать фарадой (Ф). 1 F – очень большая величина, поэтому на практике часто применяют кратные величины: микрофарады (1 мкФ = 10 -6 F ), нанофарады ( 1 нФ = 10 -9 F = 10 -3 мкФ), пикофарады (1 пкФ = 10 -12 F = 10 -6 мкФ). Очень редко применяют величину милифараду (1 мФ = 10 -3 Ф).

Конструкции современных конденсаторов отличаются от рассматриваемой нами модели. С целью увеличения ёмкости вместо пластин используют обкладки из алюминиевой, ниобиевой либо танталовой фольги, разделённой диэлектриками. Эти слоеные ленты туго сворачивают в цилиндр и помещают в цилиндрический корпус. Принцип работы не отличается от описанного выше.

Существуют также плоские конденсаторы, конструктивно состоящие из множества тонких обкладок, спрессованных между слоями диэлектрика в форме параллелепипеда. Такие модели можно представить себе в виде стопки пластин, образующих множество пар обкладок, соединённых параллельно.

В качестве диэлектриков применяют:

  • бумагу;
  • полипропилен;
  • тефлон;
  • стекло;
  • полистирол;
  • органические синтетические плёнки;
  • эмаль;
  • титанит бария;
  • керамику и различные оксидные материалы.

Отдельную группу составляют изделия, у которых одна обкладка выполнена из металла, а в качестве второй выступает электролит. Это класс электролитических конденсаторов (пример на рисунке 3 ниже). Они отличаются от других типов изделий большой удельной ёмкостью. Похожими свойствами обладают оксидно-полупроводниковые модели. Второй анод у них – это слой полупроводника, нанесённый на изолирующий оксидный слой.

Рис. 3. Конструкция радиального электролитического конденсатора

Электролитические модели, а также большинство оксидно-полупроводниковых конденсаторов имеют униполярную проводимость. Их эксплуатация допустима лишь при наличии положительного потенциала на аноде и при номинальных напряжениях. Поэтому следует строго соблюдать полярность подключения упомянутых радиоэлектронных элементов.

На корпусе такого прибора обязательно указывается полярность (светлая полоска со значками «–», см. рис. 4) или значок «+» со стороны положительного электрода на корпусах старых отечественных конденсаторов.

Рисунок 4. Обозначение полярности выводов

Срок службы электролитического конденсатора ограничен. Эти приборы очень чувствительны к высоким напряжениям. Поэтому при выборе радиоэлемента старайтесь, чтобы его рабочее напряжение было значительно выше номинального.

Свойства

Из описания понятно, что для постоянного тока конденсатор является непреодолимым барьером, за исключением случаев пробоя диэлектрика. В таких электрических цепях радиоэлемент используется для накопления и сохранения электричества на его электродах. Изменение напряжения происходит лишь в случаях изменений параметров тока в цепи. Эти изменения могут считывать другие элементы схемы и реагировать на них.

В цепях синусоидального тока конденсатор ведёт себя подобно катушке индуктивности. Он пропускает переменный ток, но отсекает постоянную составляющую, а значит, может служить отличным фильтром. Такие радиоэлектронные элементы применяются в цепях обратной связи, входят в схемы колебательных контуров и т. п.

Ещё одно свойство состоит в том, что переменную емкость можно использовать для сдвига фаз. Существуют специальные пусковые конденсаторы (рис.5), применяемые для запусков трёхфазных электромоторов в однофазных электросетях.

Рис. 5. Пусковой конденсатор с проводами

Основные параметры и характеристики

Ёмкость.

Важным параметром конденсатора является его номинальная ёмкость. Для плоского конденсатора справедлива формула:

С = (ε*ε*S) / d,

где ε – диэлектрическая проницаемость диэлектрика, S – размеры обкладок (площадь пластин), d – расстояние между пластинами (обкладками).

Реальная емкость отдельных элементов обычно невелика, но можно получить конструкцию ёмкостью в несколько фарад, если параллельно соединить огромное число обкладок. В этом случае реальная ёмкость равняется сумме всех ёмкостей обкладок.

Максимальные емкости некоторых конденсаторов могут достигать нескольких фарад.

Удельная ёмкость.

Величина, характеризующая отношение ёмкости к объёму или к массе радиодетали. Данный параметр важен в микроэлектронике, где размеры деталей очень важны.

Номинальное напряжение.

Одной из важных электрических характеристик является номинальное напряжение – значение максимальных напряжений, при которых конденсатор может работать без потери значений других его параметров. При превышении критической величины равной напряжению пробоя происходит разрушение диэлектрика. Поэтому номинальное напряжение подбирают заведомо большее любых возможных максимальных амплитуд синусоидального тока в цепи конденсатора.

Читайте также:  Светоотражающая лента для ограждения

Существуют характеристики, такие как тангенс угла потерь, температурный коэффициент ёмкости, сопротивление утечки, диэлектрическая абсорбция и др., которые интересны только узким специалистам, а их параметры можно узнать из специальных справочников.

Классификация

Основные параметры конденсаторных изделий определяются типом диэлектрика. От материала зависит стабильность ёмкости, тангенс диэлектрических потерь, пьезоэффект и другие. Исходя из этого, классификацию моделей целесообразно осуществлять именно по виду диэлектрика.

По данному признаку различают следующие типы изделий:

  • вакуумные;
  • с воздушным диэлектриком;
  • радиоэлементы, в которых диэлектриком является жидкость;
  • с твёрдым неорганическим диэлектриком (стекло, слюда, керамика). Характеризуются малым током утечки;
  • модели с бумажным диэлектриком и комбинированные, бумажно-плёночные;
  • масляные конденсаторы постоянного тока;
  • электролитические;
  • категория оксидных конденсаторов, к которым относятся оксидно-полупроводниковые и танталовые конденсаторы;
  • твёрдотельные, у которых вместо жидкого электролита используется органический полимер или полимеризованный полупроводник.

В твёрдотельных моделях срок службы больший, чем у жидко-электролитических и составляет около 50 000 часов. У них меньшее внутренне сопротивление, то есть ЭПС почти не зависит от температуры, они не взрываются.

Классифицируют изделия и по другому важному параметру – изменению ёмкости. По данному признаку различают:

  • постоянные конденсаторы, то есть те, которые имеют постоянную емкость;
  • переменные, у которых можно управлять изменением ёмкости механическим способом либо с помощью приложенного напряжения (варикапы и вариконды), а также путём изменения температуры (термоконденсаторы);
  • класс подстроечных конденсаторов, которые используют для подстройки или выравнивания рабочих ёмкостей при настройке контуров, а также с целью периодической подстройки различных схем.

Все существующие конденсаторы можно условно разделить на общие и специальные. К изделиям общего назначения относятся самые распространённые низковольтные конденсаторы (см. рис. 6). К ним не предъявляют особых требований.

Рис. 6. Конденсаторы общего назначения

Все остальные ёмкостные радиоэлементы принадлежат к классу специального назначения:

  • импульсные;
  • пусковые;
  • высоковольтные (см. рис. 7);
  • помехоподавляющие,
  • дозиметрические и др.;

Рис. 7. Высоковольтные конденсаторы

Изображённые на фото устройства могут работать в высоковольтных цепях сравнительно низкой частоты.

Маркировка

Для маркировки отечественных изделий применялась буквенная система. Сегодня распространена цифровая маркировка. В буквенной системе применялись символы:

  • К – конденсатор;
  • Б, К, С, Э и т. д – тип диэлектрика, например: К – керамический, Э – электролитический;
  • На третьем месте стоял символ, обозначающий особенности исполнения.

В данной системе маркировки иногда первую букву опускали.

В новой системе маркировки на первом месте может стоять буква К, а после неё идёт буквенно-цифровой код. Для обозначения номинала, вида диэлектрика и номера разработки используют цифры. Пример такой маркировки показан на рисунке 8. Обратите внимание на то, что на корпусе электролитического конденсатора обозначена полярность включения.

Рис. 8. Маркировка конденсаторов

  • Ёмкость от 0 до 999 пФ указывают в пикофарадах, например: 250p:
  • от 1000 до 999999 пФ – в нанофарадах: n180;
  • от 1 до 999 мкФ – в микрофарадах: 2μ5;
  • от 1000 до 999999 мкФ – в миллифарадах: m150;
  • ёмкость, больше значения 999999 мкФ, указывают в фарадах.

Обозначение на схемах

Каждое семейство конденсаторов имеет своё обозначение, позволяющее визуально определить его тип (см. рис. 9).

Рис. 9. Обозначение на схемах

Соединение конденсаторов

Существует два способа соединения: параллельное и последовательное. При параллельном соединении общая ёмкость равна сумме ёмкостей отдельных элементов: Собщ. = С1 + С2 + … + Сn.

Для последовательного соединения расчёт ёмкости рассчитывается по формуле: Cобщ. = ( C1* C2 *…* Cm ) / ( C1 + C2+…+Cn )

Чтобы быстро посчитать общую емкость соединенных конденсаторов лучше воспользоваться нашими калькуляторами:

Применение

Конденсаторы применяются почти во всех областях электротехники. Перечислим лишь некоторые из них:

  • построение цепей обратной связи, фильтров, колебательных контуров;
  • использование в качестве элемента памяти;
  • для компенсации реактивной мощности;
  • для реализации логики в некоторых видах защит;
  • в качестве датчика для измерения уровня жидкости;
  • для запуска электродвигателей в однофазных сетях переменного тока.

С помощью этого радиоэлектронного элемента можно получать импульсы большой мощности, что используется, например, в фотовспышках, в системах зажигания карбюраторных двигателей.

Конденсатор , кондер , кондюк – так его называют бывалые” специалисты один из самых распространенных элементов применяемое в различных электрических цепях. Конденсатор способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейший конденсатор состоят из двух пластинчатых электродов, разделенных диэлектриком, на этих электродах накапливается электрический заряд разной полярности, на одной пластин будет положительный заряд на другой отрицательный.

Принцип работы конденсатора и его назначение – постараюсь кратко и предельно понятно ответить на эти вопросы. В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, конденсатор получает электрический ток, сохраняет его и впоследствии передает в цепь.

При подключении конденсатора к электрической сети на электродах конденсатора начинает накапливаться электрический заряд. В начале зарядки конденсатор потребляет наибольшую величину электрического тока, по мере зарядки конденсатора электроток уменьшается и когда емкость конденсатора будет наполнена ток пропадет совсем.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам, сам, как бы становится источником питания.

Основная техническая характеристика конденсатора, это емкость. Емкостью называется способность конденсатора накапливать электрический заряд. Чем больше емкость конденсатора, тем большее количество заряда он может накопить и соответственно отдать обратно в электрическую цепь. Емкость конденсатора измеряется в Фарадах. Конденсаторы различаются по конструкции, материалов из которых они изготовлены и области применения. Самый распространенный конденсатор это – конденсатор постоянной емкости, обозначается он так –

Конденсаторы постоянной емкости изготавливаются из самых различных материалов и могут быть – металлобумажными, слюдяными, керамическими. Такие конденсаторы как электрокомпонент используются во всех электронных устройствах.

Электролитический конденсатор

Следующий распространенный тип конденсаторов это – полярные электролитические конденсаторы, его изображение на электрической схеме выглядит так –

Электролитический конденсатор так же можно назвать постоянным конденсатором, потому, что их емкость не меняется.

Но э лектролитические конденсаторы имеют очень важно отличие, знак (+) возле одного из электродов конденсатора говорит о том, что это полярный конденсатор и при подключении его в цепь нужно соблюдать полярность. Плюсовой электрод необходимо подключить к плюсу источника питания, а минусовой (который без плюсика) соответственно к отрицательному – (на корпусе современных конденсаторов наносят обозначение минусового электрода, а вот плюсовой не обозначают никак).

Читайте также:  Ролики для душевой кабины teuco

Не соблюдение этого правила может привести к выходу конденсатора из строя и даже взрыву, сопровождающемуся разлетом бумаги фольги и нехорошим запахом (от конденсатора конечно…). Электролитические конденсаторы могут иметь очень большую емкость и соответственно накапливать, довольно большой потенциал. Поэтому электролитические конденсаторы даже после отключения питания таят в себе опасность, и при неосторожном обращении ты можешь получить сильный удар электрического тока. Поэтому после снятия напряжения для безопасной работы с электрическим устройством (ремонте электроники, настройке, и т.д.) электролитический конденсатор необходимо разрядить, замкнув накоротко его электроды, (делать это нужно специальным разрядником) особенно это касается конденсаторов большой емкости которые установлены на блоках питания, где есть высокое напряжение.

Конденсаторы переменной емкости.

Как ты понял из названия переменные конденсаторы могут изменять свою емкость – например при настройке радиоприемников. Еще совсем недавно для настройки радиоприемников на нужную станцию использовались только конденсаторы переменной емкости, вращая ручку настройки приемника тем самым изменяли емкость конденсатора. Переменные конденсаторы используются и посей день в простых недорогих моделях приемников и передатчиков. Конструкция переменного конденсатора очень простая. Конструктивно он состоит из статорных и роторных пластин, роторные пластины подвижные и входят в статорные е касаясь последних. Диэлектриком в таком конденсаторе является воздух. При входе статорных пластин в роторные емкость конденсатора увеличивается, при выходе роторных пластин емкость уменьшается. Обозначение переменного конденсатора выгляди так –

ПРИМЕНЕНИЕ КОНДЕНСАТОРОВ

Конденсаторы нашли широкое применение во всех областях электротехники, они используются в различных электрических цепях.
В электроцепи переменного тока они могут служить в качестве ёмкостного сопротивления. Возьмем такой пример, при последовательном подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет.

Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора.

Благодаря этим качествам, конденсаторы применяются в качестве фильтров, в цепях подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных импульсных схемах, где требуется быстрое накопление и отдача большого электрического заряда, в ускорителях, фотовспышках, импульсных лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, создавая мощный импульс. Конденсаторы применяют для сглаживания пульсаций при выпрямлении напряжения. Способность конденсатора сохранять заряд длительное время дает возможность использовать их для хранения информации. И это только очень краткий перечень всего где может применяться конденсатор.

Продолжая занятия электротехникой, ты откроешь для себя еще много интересного в том числе и о работе и применению конденсаторов. Но, и этой информации, тебе будет достаточно для общего понимания и продвижения дальше.

Как проверить конденсатор

Для проверки конденсаторов необходим прибор, тестер или иначе мультиметр . Существуют специальные приборы измеряющие емкость (С), но эти приборы стоят денег, и зачастую нет смысла их приобретать для домашней мастерской, тем более на рынке есть недорогие китайские мультиметры с функцией измерения емкости. Если на твоем тестере нет такой функции, ты можешь воспользоваться обычной функцией прозвонки – к ак прозванивать мультиметром , как и при проверке резисторов – что такое резистор . Конденсатор можно проверить на “пробой” в этом случае сопротивление конденсатора очень большое, почти бесконечное (зависит от материала из которого изготовлен кондер). Электролитические конденсаторы проверяют следующим образом – Необходимо включить тестер в режим прозвонки, подключить щупы прибора к электродам (ножкам) конденсатора и следить за показанием на индикаторе мультиметра, показание мультиметра будет изменяться в меньшую сторону, пока не остановится совсем. После чего нужно щупы поменять местами, показания начнут уменьшаться почти до нуля. Если все произошло так как я описал, “кондер” исправен. Если нет изменений в показаниях или показания сразу становятся большими или прибор вовсе показывает ноль, конденсатор неисправен. Лично я предпочитаю проверять “кондюки” стрелочным прибором плавность движения стрелки легче отслеживать, чем мелькание цифр в окошке индикатора.

Рассчитать емкость конденсатора можно по формуле:

Емкость конденсатора измеряется в Фарадах, 1 фарад – это огромная величина. Такую ёмкость будет иметь металлический шар размеры которого будут превышать размеры нашего солнца в 13 раз. Шар размером в планету Земля будет иметь иметь емкость всего 710 микрофарад. Обычно, емкость конденсаторов которые мы применяем в электротехнических устройствах обзначается в микрофарадах (mF), пикофарадах (nF), нанофарадах ( nF). Следует знать что, 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF. Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя.

Этих знаний тебе будет вполне достаточно для начала и для того чтобы самостоятельно продолжить изучение конденсаторов и их физических свойств в специальной технической литературе. Желаю успеха и настойчивости!

Что такое конденсатор

Конденсаторы или как в народе говорят – кондеры, образуются от латинского “condensatus”, что означает как “уплотненный, сгущенный”. Интересное название, не правда ли? Но теперь вопрос ставится ребром: ” А что уплотняется или сгущается в конденсаторе?” А сгущается в конденсаторе электрический заряд. Конденсатор – это своеобразный аккумулятор, но прикол в нем такой, что он готов сразу отдать весь заряд за доли секунды. Главное отличие от аккумулятора в том, что внутри него нет источника ЭДС.

В свое время, еще в школе, мы развлекались тем, что брали конденсатор типа МБГЧ, емкостью побольше, на долю секунды вставляли его в розетку и потом шваркали друг друга этим конденсатором. Ощущения были очень “приятными” 🙂 Чем больше емкость, тем ярче ощущения))).

Но, как говорится, времена идут, а конденсатор остается конденсатором. И используется он теперь не только, для того, чтобы гонять друг друга, но также широко используется и в радиоэлектронике. Скорее всего, последняя фраза даже более правдивая, чем первая :-).

Читайте также:  Перечислите основные группы цветных металлов

Как устроен конденсатор

Любой конденсатор состоит из двух обкладок и эти обкладки изолированы друг от друга и не прикасаются с друг другом. Представим себе блин:

намажем его сгущенкой

и сверху положим точно такой же блин

Должно выполняться условие:эти два блина не должны прикасаться друг с другом. То есть верхний блин должен лежать на сгущенке и не прикасаться с нижним блином. Тут, думаю, все понятно. Перед Вами типичный “блинный конденсатор” :-). Вот таким образом устроены все конденсаторы, только вместо блинов используются тонкие металлические пластины, а вместо сгущенки разный диэлектрик. К каждой металлической пластине присоединен проводок – это и есть выводы конденсатора.

Как я уже сказал, конденсатор способен накапливать электрический заряд. Эту способность называют емкостью. Чем больше емкость, тем больше конденсатор сможет накопить электрического заряда. Его емкость измеряется в Фарадах (Ф или зарубежный (буржуйский) вариант F). В радиоэлектронной и электротехнической промышленности используются конденсаторы абсолютно разных номиналов. Емкость зависит от площади “блинов”, толщины “сгущенки” намазанной между ними, а также от состава сгущенки :-). Чем больше площадь “блинов” и тоньше “сгущенка”, тем больше его емкость.

А вот и конденсаторы, которые похожи на блинчики, но эти блинчики могут также быть и квадратной формы:

Для того, чтобы уменьшить габариты конденсатора, можно завернуть его в трубочку, как и наш тортик из двух блинов со сгущенкой:

В результате у нас получатся малые габариты, но большой объем. Это не беда! Ведь свернуть в трубочку можно очень большие “блины”, если “сгущенка” между ними намазана очень тонким слоем. Этот принцип используется в цилиндрических конденсаторах.

В них как раз намотан вот такой “рулончик”. На фото разобранный цилиндрический конденсатор.

Как видите, здесь две ленты алюминиевой фольги, а между ними тонкая светло-коричневая бумага – диэлектрик. Такие конденсаторы обладают большой емкостью, так как у них площадь пластин, как вы видите, очень приличная.

Виды конденсаторов и их обозначение на схеме

Все конденсаторы на схемах обозначаются буковкой “С”. Простые делятся на два вида: полярные и неполярные. Неполярные конденсаторы очень распространены и занимают значительную часть радиоаппаратуры:

а также к ним относятся маленькие SMD конденсаторы вот такого типа:

на схемах неполярные конденсаторы обозначаются вот таким образом:

К полярным конденсаторам относятся электролитические конденсаторы

и SMD полярные конденсаторы:

На схемах обозначаются вот так, то есть у них есть плюсовый вывод, который в цепи должен быть соединен с положительным потенциалом схемы.

По аналогии с резисторами, есть на свете и конденсаторы переменной емкости (КПЕ):

на схемах обозначаются как-то вот так:

ну и, конечно же, подстроечные конденсаторы:

а вот и их схемное обозначение:

Есть также особый класс конденсаторов – ионисторы. Иногда их еще называют суперконденсаторами или золотыми конденсаторами. Нет, не потому, что там есть золото. Сам принцип работы ионистора ценее, чем золото. Для того, чтобы получить максимальную емкость мы должны намазать “сгущенку”(диэлектрик) тонким-тонким слоем или увеличить площадь блинов (металлических пластин). Так как без конца увеличивать слой блинов очень затратно, разработчики решили уменьшить слой диэлектрика. Так как диэлектрический слой между обкладками ионистора , то есть “слой сгущенки”, составляет 5-10 нанометров, следовательно емкость ионистора достигает впечатляющих значений! Вы только представьте, какой заряд может накопить такой суперконденсатор!

Емкость таких конденсаторов может достигать до десятка фарад. Поверьте, это очень много. Ионисторы выглядят, как обычные таблетки, а также могут выглядеть как цилиндрические конденсаторы. Для того, чтобы различить их от конденсаторов, достаточно взглянуть на емкость, которая на них указана. Если там единицы Фарад, то это однозначно ионистор!

В настоящее время ионисторы стали очень широко применяться в электронике и электротехнике. Они заменяют маленькие батарейки с малым напряжением, потому что ионистор конструктивно пока что не могут сделать на напряжение более нескольких Вольт. Но можно соединить их последовательно и набрать нужное напряжение. Но удовольствие это не дешевое :-).

Они также очень быстро заряжаются, так как их сопротивление ограничено только их выводами. А исходя из Закона Ома, чем меньше сопротивление проводника, тем большая Сила тока течет по нему и следовательно тем быстрее заряжается ионистор. Заряжать и разряжать ионисторы можно туеву кучу раз).

Последовательное и параллельное соединение конденсаторов

При последовательном соединении конденсаторов

общая емкость вычисляется по формуле

а при параллельном соединении

их общая емкость будет вычисляться по формуле:

Про то, как проверить конденсатор на работоспособность, можете узнать, прочитав эту статью.

Конденсаторы – это огромная тема в радиоэлектронике. В этой статье я затронул только основные понятия. В настоящее время ни одно устройство не обходится без этих радиоэлементов. При выборе конденсатора обязательно смотрите, на какое напряжение он рассчитан. Если он будет использоваться в цепях с высоким напряжением, то он может либо сгореть либо даже взорваться. Если, например, я собираюсь использовать его в цепях с напряжением в 36 Вольт, то я должен взять хотя бы минимум на 50 Вольт и больше, но не меньше! Всегда обращайте внимание на этот параметр.

Имейте также ввиду, что конденсаторы и их виды очень чувствительны к нагреву и могут менять свою емкость под воздействием температуры. Поэтому, при проектировании старайтесь распределять их на плате подальше от разного рода нагревашек: радиаторов, трансформаторов и мощных резисторов.

Будьте осторожны с конденсаторами большой емкости. Прежде, чем взять его в руки, убедитесь, что он разряжен. Желательно разряжать такие конденсаторы через сопротивление от 1 КилоОма, замкнув его выводы этим самым резистором. Старайтесь не задевать голыми руками выводы конденсатора, когда будете проводить эти операции.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *