Характеристики частотного преобразователя для электродвигателя

Содержание

Трехфазные асинхронные электродвигатели – самые распространенные электрические машины. Их отличают небольшие габариты при значительной мощности, простота конструкции, низкая стоимость. До появления частотных регуляторов применение этих устройств ограничивали высокие пусковые токи, сложные схемы регулирования скорости вращения ротора.

Ранее для этого применялись:

  • Механические устройства (муфты, редукторы и т.д.).
  • Электрические схемы, изменяющие величину питающего напряжения.

Такие методы не обеспечивали точность, жесткие механические характеристики электродвигателя во всем диапазоне регулирования вызывали значительные потери мощности. В качестве электропривода ответственного оборудования применялись электрические машины постоянного тока, а также двигатели с фазным ротором.

С появлением высоковольтных транзисторов и тиристоров стал возможным серийный выпуск частотных преобразователей для асинхронных электродвигателей мощностью до десятков МВт. Частотно-регулируемый электропривод отвечает всем современным требованиям:

  • Максимально возможный К.П.Д. (свыше 90%).
  • Надежность и простота управления.
  • Высокая ремонтопригодность.
  • Широкий диапазон и плавное регулирование скорости вращения, углового положения вала, разгона и торможения, момента силы и других параметров.
  • Высокая энергоэффективность.
  • Изменение характеристик в зависимости от фактической нагрузки на валу.
  • Помехоустойчивость и быстрое устранение ошибок.
  • Снижение тока при запуске до 100-200% от номинального.

Применение преобразователей частоты позволяет заменить дорогостоящие электромоторы переменного тока с фазным ротором и двигатели постоянного тока на дешевые асинхронные машины с короткозамкнутым ротором.

Принцип работы частотного преобразователя

Принцип частотного регулирования основан на зависимости скорости вращения магнитного поля от частоты напряжения, поданного на обмотки статора. ПЧ состоит из силовой и управляющей части. Первая состоит из управляемого или неуправляемого выпрямителя, конденсатора и инвертора. Переменное напряжение сети поступает на выпрямитель, где преобразуется в постоянное. Пульсация получаемого напряжения сглаживается на конденсаторе. Далее постоянное напряжение инвертируется в переменное и поступает в цепь питания электродвигателя.

Постоянная составляющая и высшие гармоники сглаживаются на обмотках двигателя. При необходимости между ПЧ и электрической машиной включают L-фильтры.

Частота и амплитуда напряжения в выходной цепи зависит от управляющих импульсов, отпирающих и запирающих транзисторные ключи инвертора.

Управляющая часть содержит микроконтроллер. Функции этого устройства – формирование управляющих сигналов в соответствии с заданной программой, обработка информации с датчиков, подача сигналов на внешние устройства. Кроме того, в состав управляющей схемы могут входить устройства связи, конвертор интерфейсов, дополнительная память.

Типы сигналов управления

Частотный преобразователь имеет входные и выходные клеммы для подключения датчиков, внешних устройств управления, сигнализации и контроля. Для управления частотно-регулируемым приводом используют следующие сигналы:

  • Цифровые(0-5; 0-10 В). Служат для обмена данными с ПК, а также оборудованием удаленного контроля по протоколам САN, RS232, LАN и так далее.
  • Аналоговые (0-10 В; 0-20 мА). К таким входам подключают датчики, устройства управления с соответствующим уровнем выходного сигнала.
  • Релейные. Предназначены для включения устройств оповещения, сигнальных ламп, звуковой сигнализации, тормозных электромагнитных муфт и т.д.
  • Дискретные (0-10 В; 0-20 мА). Для подключения устройств с 2 положениями.

Как правильно подобрать преобразователь частоты для трехфазного двигателя

Выбор ПЧ делают по следующим критериям:

  • Способу управления. Различают векторный и скалярный способ управления электродвигателями. Последний применяется для низкопроизводительных вентиляторов, насосных агрегатов, компрессоров. Для лифтов, кранового оборудования и других устройств, требующих точной регулировки с обратной связью по нескольким характеристикам, применяют векторные ПЧ.
  • Диапазону регулирования скорости и момента. Он должен соответствовать требованиям к оборудованию.
  • Номинальному току, электрической мощности и напряжению. При этом учитывают максимальное значение величин этих характеристик. Рекомендуемый запас мощности ПЧ составляет 15-20%. На двигателе обычно указывают 2 значения напряжения при подключении в звезду или треугольник. Необходимо подобрать преобразователь с номинальным напряжением, соответствующим типу соединения обмоток.
  • Количеству аналоговых, цифровых и релейных входов и выходов. Для упрощения последующей модернизации системы управления электроприводом необходимо подобрать преобразователь частоты с большим количеством разъемов.
  • Электромагнитной совместимости. Частотный преобразователь является источником высших гармоник и электромагнитных помех. При выборе этого устройства необходимо учесть электромагнитную совместимость с другим оборудованием. При необходимости применять экранированные кабели и фильтры.
  • Классу пылевлагозащищенности IP. При невозможности подобрать подходящий ПЧ, устройство, несоответствующее условиям монтажа, устанавливают в электротехнические шкафы, обеспечивающие необходимую защиту от пыли и влаги.
  • Возможности подключения нескольких электродвигателей. Для подключения двух или более однотипных двигателей иногда достаточно одного преобразователя частоты.
  • Наличию информационного дисплея, пульта дистанционного управления, поддерживаемым протоколам обмена данными, другим дополнительным функциям.

Самостоятельное подключение ПЧ

Подключение частотных преобразователей может осуществляться собственным электротехническим персоналом предприятия. При этом руководствуются технической документацией и следующими правилами:

  • Класс ЭМС ПЧ должен соответствовать аналогичной характеристике другого электрооборудования. Для достижения этого требования используют РЧ-фильтры и экранируемые кабели.
  • Электродвигатели, для плавного пуска которых применялось переключение “звезда-треугольник”, подключают по одной рабочей схеме.
  • ПЧ защищают трехфазным автоматическим выключателем и плавкими предохранителями, включаемыми перед устройством.
  • Все управляющие кабели прокладывают раздельно. Также запрещена совместная прокладка силовой и контрольной линии.
  • Датчик температуры обмоток подключают к соответствующему входу ПЧ.
  • Недопустимо включение конденсаторных фильтров между частотником и электродвигателем. Для компенсации реактивной составляющей используют индуктивные устройства.
  • При наличии принудительного охлаждения электродвигателя, управляющую цепь также подключают к ПЧ, который обеспечивает одновременный запуск охлаждающего вентилятора и электродвигателя.
  • При установке ПЧ в шкафах управления должна быть обеспечена хорошая вентиляция и охлаждение корпуса устройства.
Читайте также:  Под фиолетовые обои подобрать

Частотные преобразователи применяются во всех сферах промышленности и народного хозяйства, а также для бытового электропривода. Их применение снижает потребление электроэнергии, позволяет заменить дорогие электрические машины на простые и дешевые двигатели асинхронного типа, упростить схемы автоматического управления.

Согласно ГОСТ 23414-84 полупроводниковый преобразователь частоты – полупроводниковый преобразователь переменного тока, осуществляющий преобразование переменного тока одной частоты в переменный ток другой частоты

Частотный преобразователь – это устройство, используемое для того чтобы обеспечить непрерывное управление процессом. Обычно частотный преобразователь способен управлять скоростью и моментом асинхронных и/или синхронных двигателей.

Преобразователи частоты находят все более широкое применение в различных приложениях промышленности и транспорта. Благодаря развитию силовых полупроводниковых элементов, инверторы напряжения и инверторы тока с ШИМ управлением получают все более широкое распространение. Устройства, которые преобразуют постоянный сигнал в переменный, с желаемым напряжением и частотой, называются инверторами. Такое преобразование может быть осуществлено с помощью электронных ключей (BJT, MOSFET, IGBT, MCT, SIT, GTO) и тиристоров в зависимости от задачи.

На данный момент основная часть всей производимой электрической энергии в мире используется для работы электрических двигателей. Преобразование электрической мощности в механическую мощность осуществляется с помощью электродвигателей мощностью от меньше ватта до нескольких десятков мегаватт.

    Современные электроприводы должны отвечать различным требованиям таким как:

  • максимальный КПД;
  • широкий диапазон плавной установки скорости вращения, момента, ускорения, угла и линейного положения;
  • быстрое удаление ошибок при изменении управляющих сигналов и/или помех;
  • максимальное использование мощности двигателя во время сниженного напряжения или тока;
  • надежность, интуитивное управление.

Конструкция частотного преобразователя

Основными элементами частотного преобразователя являются силовая часть (преобразователь электрической энергии) и управляющее устройство (контроллер). Современные частотные преобразователи обычно имеют модульную архитектуру, что позволяет расширять возможности устройства. Также зачастую имеется возможность установки дополнительных интерфейсных модулей и модулей расширения каналов ввода/вывода.

Методы управления

На микроконтроллере частотного преобразователя выполняется программное обеспечение, которое управляет основными параметрами электродвигателя (скоростью и моментом). Основные методы управления бесщеточными двигателями, используемые в частотных преобразователях представлены в таблице ниже.

Метод управления электродвигателем Диапазон регулирования скорости Погрешность скорости 3 , % Время нарастания момента, мс Пусковой момент Цена Стандартные применения
Скалярный 1:10 1 5-10 Не доступно Низкий Очень низкая Низкопроизводительные: насосы, вентиляторы, компрессоры, ОВК (отопление, вентиляция и кондиционирование)
Векторный Линейный Полеориентированное управление >1:200 2 1:200 2 Нелинейный

Прямое управление моментом с таблицей включения >1:200 2 1:200 2

Инвертор напряжения

Инвертор напряжения наиболее распространен среди силовых преобразователей.

Двухуровневый инвертор напряжения

Двухуровневый инвертор напряжения (two-level voltage-source inverter) – наиболее широко применяемая топология преобразователя энергии. Он состоит из конденсатора и двух силовых полупроводниковых ключей на фазу. Управляющий сигнал для верхнего и нижнего силовых ключей связан и генерирует только два возможных состояния выходного напряжения (нагрузка соединяется с положительной или отрицательной шиной источника постоянного напряжения).

Используя методы модуляции для генерирования управляющих импульсов возможно синтезировать выходное напряжение с желаемыми параметрами (формой, частотой, амплитудой). Из-за содержания высоких гармоник в выходном сигнале для генерирования синусоидальных токов выходной сигнал необходимо фильтровать, но так как данные преобразователи обычно имеют индуктивную нагрузку (электродвигатели) дополнительные фильтры используются только при необходимости.

Максимальное выходное напряжение определяется значением постоянного напряжения звена постоянного тока. Для эффективного управления мощной нагрузкой требуется высокое постоянное напряжение звена постоянного тока, но на практике это напряжение ограничено максимальным рабочим напряжением полупроводников. Для примера низковольтные IGBT транзисторы обеспечивают выходное напряжение до 690 В. Для того чтобы обойти данное ограничение по напряжению в последние десятилетия были разработаны схемы многоуровневых преобразователей. Данные преобразователи сложнее, чем двухуровневые в плане топологии, модуляции и управления, но при этом имеют лучшие показатели по мощности, надежности, габаритам, производительности и эффективности.

Трехуровневый преобразователь с фиксированной нейтральной точкой

В трехуровневом преобразователе с фиксированной нейтральной точкой (three-level neutral point clamped converter) постоянное напряжение делится поровну посредством двух конденсаторов, поэтому фаза может быть подключена к линии положительного напряжения (посредством включения двух верхних ключей), к средней точке (посредством включения двух центральных ключей) или к линии отрицательного напряжения (посредством включения двух нижних ключей). Каждому ключу в данном случае требуется блокировать только половину напряжения звена постоянного тока, тем самым позволяя увеличить мощность устройства, используя те же самые полупроводниковые ключи, как и в обычном двухуровневом преобразователе. В данном преобразователе обычно используются высоковольтные IGBT транзисторы и IGCT тиристоры.

    Недостатками данных преобразователей являются:

  • Дисбаланс конденсаторов, создающий асимметрию в преобразователе. Данную проблему предлагается решать путем изменения метода модуляции.
  • Неравное распределение потерь из-за того, что потери на переключение внешних и центральных ключей отличаются в зависимости от режима работы. Данная проблема не может быть решена с использованием обычной схемы, поэтому была предложена измененная топология – активный преобразователь со связанной нейтральной точкой (active NPC). В этой схеме диоды заменены управляемыми ключами. Таким образом, выбирая соответствующую комбинацию ключей, возможно уменьшить и равномерно распределить потери.

Преобразователь с фиксированной нейтральной точкой может масштабироваться для достижения больше чем трех уровней выходного сигнала путем деления напряжения звена постоянного тока более чем на два значения посредством конденсаторов. Каждое из этих деленных напряжений может быть подключено к нагрузке с использованием расширенного набора ключей и ограничительных диодов. Вместе с увеличением мощности преимуществами многоуровневого преобразователя является лучшее качество электроэнергии, меньшее значение скорости нарастания напряжения (dv/dt) и связанных электромагнитных помех. Однако, когда преобразователь со связанной нейтральной точкой имеет более трех уровней, появляются другие проблемы. С точки зрения схемотехники в таком случае ограничительные диоды требуют более высокое максимальное рабочее напряжение чем основные ключи, что требует использования различных технологий или нескольких ограничительных диодов соединенных последовательно. В дополнение становится критическим неравномерное использование силовых элементов в схеме. В итоге из-за увеличения количества элементов снижается надежность. Приведенные недостатки ограничивают использование преобразователей с фиксированной нейтральной точкой с более чем тремя уровнями в промышленных приложениях.

Читайте также:  Аппарат для производства мягкого мороженого

Многоуровневые преобразователи

Каскадные преобразователи основанные на модульных силовых ячейках со схемой H-мост (cascaded H-bridge – CHB) и преобразователи с плавающими конденсаторами (flying capacitor converter) были предложены для обеспечения большего количества уровней выходного напряжения в сравнении с преобразователями с фиксированной нейтральной точкой.

Каскадный Н-мостовой преобразователь

Каскадный преобразователь – высоко модульный преобразователь, состоящий из нескольких однофазных инверторов, обычно называемыми силовыми ячейками, соединенными последовательно для формирования фазы. Каждая силовая ячейка выполнена на стандартных низковольтных компонентах, что обеспечивает их легкую и дешевую замену в случае выхода из строя.

Основным преимуществом данного преобразователя является использование только низковольтных компонентов, при этом он дает возможность управлять мощной нагрузкой среднего диапазона напряжения. Несмотря на то что частота коммутации в каждой ячейке низкая, эквивалентная частота коммутации приложенная к нагрузке – высокая, что уменьшает потери на переключение ключей, дает низкую скорость нарастания напряжения (dv/dt) и помогает избежать резонансов.

Преобразователь с плавающими конденсаторами

Выходное напряжение преобразователя с плавающими конденсаторами получается путем прямого соединения выхода фазы с положительной, отрицательной шиной или подключением через конденсаторы. Количество уровней выходных напряжений зависит от количества навесных конденсаторов и отношения между различными напряжениями.

Этот преобразователь, как и в случае каскадного преобразователя, также имеет модульную топологию, где каждая ячейка состоит из конденсатора и двух связанных ключей. Однако, в отличие от каскадного преобразователя добавление дополнительных силовых ключей к конденсаторному преобразователю не увеличивает номинальную мощность преобразователя, а только уменьшает скорость нарастания напряжения (dv/dt), улучшая коэффициент гармоник выходного сигнала. Как и у каскадного преобразователя, модульность уменьшает стоимость замены элементов, облегчает поддержку и позволяет реализовать отказоустойчивую работу.

Конденсаторный преобразователь требует только один источник постоянного тока для питания всех ячеек и фаз. Поэтому, можно обойтись без входного трансформатора, а количество ячеек может быть произвольно увеличено в зависимости от требуемой выходной мощности. Подобно преобразователю с фиксированной нейтральной точкой, этому преобразователю требуется специальный алгоритм управления для регулирования напряжения на конденсаторах.

Инвертор тока

Для работы инвертору тока всегда требуется управляемый выпрямитель, чтобы обеспечить постоянный ток в звене постоянного тока. В стандартной топологии обычно используются тиристорные выпрямители. Чтобы уменьшить помехи в нагрузке, в звене постоянного тока используется расщепленная индуктивность. Инвертор тока имеет схему силовых ключей наподобие инвертора напряжения, но в качестве силовых ключей используются тиристоры с интегрированным управлением (IGCT). Выходной ток имеет форму ШИМ и не может быть напрямую приложен к индуктивной нагрузке (электродвигателю), поэтому инвертор тока обязательно включает выходной емкостной фильтр, который сглаживает ток и выдает гладкое напряжение на нагрузку. Этот преобразователь может быть реализован для работы на средних напряжениях и более того он по природе имеет возможность рекуперации энергии.

Прямые преобразователи

Прямые преобразователи передают энергию прямо от входа к выходу без использования элементов накопления энергии. Основным преимуществом таких преобразователей является меньшие габариты. Недостатком – необходимость более сложной схемы управления.

Циклоконвертер относится к категории прямых преобразователей. Данный преобразователь широко использовался в приложениях требующих высокую мощность. Этот конвертер состоит из двойных тиристорных преобразователей на фазу, который может генерировать изменяемое постоянное напряжение, контролируемое таким образом, чтобы следовать опорному синусоидальному сигналу. Вход каждого преобразователя питается от фозосмещающего трансформатора, где устраняются гармоники входного тока низкого порядка. Выходное напряжение является результатом комбинации сегментов входного напряжения в котором основная гармоника следует за опорным сигналом. По своей природе данный преобразователь хорошо подходит для управления низкочастотными мощными нагрузками.

Матричный преобразователь в его прямой и непрямой версии также принадлежит к категории прямых преобразователей. Основной принцип работы прямого матричного преобразователя (direct matrix converter) – возможность соединения выходной фазы к любому из входных напряжений. Преобразователь состоит из девяти двунаправленных ключей, которые могут соединить любую входную фазу с любой выходной фазой, позволяя току течь в обоих направлениях. Для улучшения входного тока требуется индуктивно-емкостной фильтр второго порядка. Выход напрямую соединяется с индуктивной нагрузкой. Не все доступные комбинации ключей возможны, они ограничены только 27 правильными состояниями коммутации. Как говорилось ранее, основное преимущество матричных преобразователей – меньшие габариты, что важно для автомобильных и авиационных приложений.

Непрямой матричный преобразователь (indirect matrix converter) состоит из двунаправленного трехфазного выпрямителя, виртуального звена постоянного тока и трехфазного инвертора. Количество силовых полупроводников такое же как у прямых матричных преобразователей (если двунаправленный ключ рассматривается как два однонаправленных ключа), но количество возможных состояний включения отличается. Используя ту же самую конфигурацию непрямого матричного преобразователя, возможно упростить его топологию и уменьшить количество элементов ограничив его работу от положительного напряжения в виртуальном звене постоянного тока. Уменьшенная топология называется разреженный матричный преобразователь (sparse matrix converter).

    0 commentsПринцип работы Январь 19, 2017

Эффективность и срок службы частотных преобразователей и механизма в целом зависит от того, насколько правильно сделан выбор. Эффект экономии от использования в производстве частотника получается из-за экономии энергии в различных механизмах до 50% за счет возможности регулировки производительности изменением выходной частоты оборотов мотора.

Характеристика частотных преобразователей

При выборе нужно смотреть на то, какой режим будет у электропривода, мощности мотора, диапазон регулировки скорости, поддержки точности вращающего номинального момента на моторе с открытым коллектором, времени разгона и торможения, множества включений в единицу времени.

Читайте также:  Как рассчитать размер тюли на окно

Мощность многофункциональных программируемых преобразователей – это важный параметр вращающего номинального пускового момента электрического привода. Для этого нужно определиться со способностью к нагрузкам. В зависимости от номинала мощности мотора выбирается частотный преобразователь серии мощности, который рассчитывается на подходящую мощность (кВт). Это будет правильным выбором, если нагрузка на двигателе не будет меняться в динамике разгона, и ток не будет сильно выходить за номинал значения установки для вращающего момента двигателя и преобразователя.

Поэтому, лучше делать выбор по наибольшему токовому значению двигателя с режимом учета способности перегрузки. Способность к излишним нагрузкам дается в процентах от номинала тока за диапазон времени разгона. Чтобы правильно выбрать аналоговый выход двигателя, надо определить характер нагрузок имеющегося привода: уровень работы, период времени, частота появления нагрузок.

Напряжение работы привода

Важным вопросом будет напряжение питания. Самым распространенным случаем является то, когда питание от 3-фазной сети производства 380 вольт. Варианты есть, когда привод предназначен на эксплуатацию от одной фазы на 220 вольт. Последний вариант ограничен мощностями до 4 кВт. Есть варианты работы привода на высоком напряжении, которые дают векторное управление мощными двигателями, с мощностью в мегаваттах, с меньшим током. Все варианты применяются для разных видов решений, зависят от характера снабжения электрической энергией, от обуславливания использования привода конкретной характеристики.

Диапазон управления

Если скорость не снизится меньше 10% от номинального диапазона, то можно применить любой преобразователь. В других случаях нужно убедиться, может ли преобразователь серии номинальной работать с двигателем на малых оборотах. Асинхронный мотор охлаждает сам себя встроенным вентилятором на валу. При уменьшении скорости охлаждение ухудшается. Многие преобразователи векторного управления режимом имеют встроенные опции контроля температуры через датчик.

Режим снижения скорости

Торможение путем выбега подобно отключению мотора от питания. Это может продолжаться долгое время. Частотником можно быстро остановить двигатель:

  • Произвести рекуперацию.
  • Остановить, подав на обмотку сниженную выходную частоту напряжения.
  • Замкнуть обмотки сопротивлением.

Вариант торможения выбирается из экономии.

Функции управления частотным преобразователем

Многие приводы работают по заданию. Плавно повышают или снижают обороты мотора с открытым коллектором. Иногда нужна определенная скорость. В обоих случаях можно управлять с панели приборов и по цифровым входам кнопками. Если применять переключатели и потенциометры, то нужно знать количество аналоговых входов. Если частотник управляется от сети, то нужен специальный интерфейс пульта управления с встроенным многофункциональным программируемым протоколом данных.

Функции защиты

Защита имеет набор функций:

  • Защита от скачков напряжения.
  • Слежение за температурой мотора.
  • Контроль нагрева радиатора.
  • Защита встроенных транзисторов выхода IGBT.

Структура преобразователя частоты

На электродвигателе есть три фазы. К фазам подключен входной дроссель для снижения нагрузки в пусковой момент. Дроссель исполняет роль входного фильтра. Следующий блок многофункционального программируемого частотного преобразователя – это высоковольтный выпрямитель. Он состоит из больших встроенных диодов. Далее, идет инвертор, который состоит из IGBT транзисторов в количестве 6 штук. На выходе инвертор создает фазы с измененной частотой.

На аналоговом входе до выпрямителя синусоида. В выпрямителе она выпрямляется. Выпрямленное напряжение формируется в миандр, то есть, прямоугольные импульсы на выходе. Не каждый электродвигатель с аналогового входа способен работать с преобразователем частоты. Существуют синфазные токи, которые за несколько минут разбивают подшипник. Это неоднократно проверялось. Микроконтроллер на выходе может менять не только целые герцы, но и доли герца. Каждый герц можно считать, как одной скоростью. Он может ее увеличивать до килогерц. Двигателям вращающего номинального момента большую частоту можно поднимать до 70 герц, будет увеличиваться скорость разгона двигателя. Превысив порог 70 герц, двигатель начнет воспринимать этот период. Паузы двигатель не будет воспринимать. Он воспримет их как постоянное напряжение. Он загудит, нагреется и сгорит. Поэтому слишком наращивать частоту не стоит.

Инвертор имеет ШИМ (широтно-импульсную модуляцию). Каждый период будет формироваться из множества открытий и закрытий транзистора. От частоты ШИМ-модуляции будет зависеть тепловой нагрев обмоток двигателя, возникнет шум при высокой частоте.

Чем больше скорость, тем будет меньше вращающий момент. У каждого двигателя есть моментная сила давления в Ньютон на метр. Чем меньше частота, тем сильнее будет давить электродвигатель при снижении нагрузки. Чем больше частота аналогового выхода, тем меньше сила давления. Это физическая формула, никуда от этого не деться. При увеличении скорости с пульта управления двигатель будет тянуть намного меньше. При низкой скорости сила двигателя будет в разы больше. Зависимость обратнопро-порциональная.

Частотный преобразователь с трехуровневым инвертором и диодным выпрямителем

Наличие в частотнике инвертора с тремя уровнями дает возможность увеличивать системное напряжение. Если не нужна рекуперация энергии в сеть, то лучше применить диодный выпрямитель с трехфазными мостами, соединенными последовательной схемой. Когда средняя точка спайки мостов диодов не соединена с точкой присоединения конденсатора инвертора, то потенциал выпрямителя на диодах имеет малые пульсации, использовать дроссель не нужно. Для соединения выпрямителя к сети применяют трансформатор с тремя обмотками. Схема частотника с выпрямителем на диодах и инвертором на трех уровнях:

Сетевой дроссель подсоединяется в питающую сеть частотника, служит для защиты от нестабильной связи с сетью, является буфером.

Дроссель двигателя подключается между мотором и частотным преобразователем, играет роль ограничителя скорости повышения напряжения, для токового ограничения от короткого замыкания.

На видео — принцип работы частотного преобразователя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *