Электрический ток в электролитах применение

Передача электричества

Электрический ток – это упорядоченное движение заряженных частиц. Носителями заряда электрического тока в электролитах являются ионы. Они образуются в результате распада (электролитической диссоциации) молекул вещества под действием молекул воды в растворе или при нагревании и образовании расплава.

Расщепление молекул происходит за счёт разрыва полярных ковалентных или ионных связей. Интенсивность диссоциации зависит от температуры и концентрации раствора. Также на степень диссоциации влияет природа электролита. В связи с этим выделяют:

  • слабые электролиты, распадающиеся частично или не распадающиеся вообще;
  • сильные электролиты, быстро распадающиеся на ионы.

К слабым электролитам относится большинство органических веществ, слабые кислоты, плохо растворимые соли и нерастворимые основания. Сильные кислоты, щёлочи, соли относятся к сильным электролитам.

Рис. 1. Процесс электролитической диссоциации.

Образованные в результате диссоциации ионы делятся на два типа:

  • катионы – положительно заряженные частицы;
  • анионы – отрицательно заряженные частицы.

Проводником электрического тока в электролитах является электрод. Он может быть анодом или катодом. Анод присоединён к положительному полюсу источника тока, катод – к отрицательному. Анод окисляет вещества, находящиеся в электролите, катод – восстанавливает.

Рис. 2. Электроды.

Если в раствор электролита поместить два электрода – катод и анод – и включить электрический ток, то ионы начнут двигаться под действием электрического поля. Катионы устремятся к катоду, анионы – к аноду. Достигнув электродов, ионы нейтрализуются, превращаются в нейтральные атомы и оседают.

Процесс разложения вещества на составные части, которые оседают на электродах, называется электролизом.

Закон Фарадея

Процесс электролиза экспериментально изучил английский физик и химик Майкл Фарадей в 1833 году. Он сформулировал закон, согласно которому масса выделившегося на электроде вещества прямо пропорциональна прошедшему через электролит заряду. Этот закон закрепился в науке как первый закон Фарадея.

Рис. 3. Майкл Фарадей.

  • m – масса вещества;
  • Q – заряд;
  • k – электрохимический эквивалент;
  • I – сила тока;
  • t – время действия тока.

Согласно второму закону Фарадея масса выделившегося на электроды вещества прямо пропорциональна отношению молярной массы к валентности и равна электрохимическому эквиваленту.

  • m – масса выделившегося вещества;
  • k – электрохимический эквивалент;
  • M – молярная масса;
  • z – валентность вещества.

Электролиз используется в щелочных и кислотных аккумуляторах. С помощью электролиза можно защитить изделие металлическим покрытием.

Что мы узнали?

Электрический ток в электролитах передают ионы, образовавшиеся в результате электролитической диссоциации. Положительно заряженные ионы – катионы – движутся к отрицательно заряженному электроду – катоду. Отрицательно заряженные анионы устремятся к положительно заряженному электроду – аноду. Достигнув электрода, ионы нейтрализуются, превращаясь в атомы вещества, и оседают на электродах. Это явление было изучено Майклом Фарадеем и получило название электролиза.

Жидкости, как и твердые тела, могут быть диэлектриками, проводниками и полупроводниками. К числу диэлектриков относится дистиллированная вода, к проводникам – растворы и расплавы электролитов: кислот, щелочей и солей. Жидкими полупроводниками являются расплавленный селен, расплавы сульфитов и др..

Электролиты состоят из молекул, которые при растворении в воде распадаются ионы, способные к свободному перемещению.

Распад молекул вещества на ионы под действием молекул растворителя называется электролитической диссоциацией. Процесс, обратный диссоциации – рекомбинация. Носителями тока в электролитах являются положительно и отрицательно заряженные ионы. Если сосуд с раствором электролита включить в электрическую цепь, то отрицательные ионы начнут двигаться к положительному электроду – аноду, а положительные – к отрицательному – катоду. В результате установится электрический ток. Таким образом, электрический ток в жидкостях – это упорядоченное движение положительных ионов к катоду, а отрицательных – к аноду.

Жидкости могут обладать и электронной проводимостью – например, жидкие металлы.

При ионной проводимости прохождение тока связано с переносом вещества. На электродах происходит выделение веществ, входящих в состав электролита. На аноде отрицательно заряженные ионы отдают свои лишние электроны, а на катоде положительные ионы получают недостающие электроны. Процесс выделения на электроде вещества, входящего в состав электролита, называется электролизом(«лио» – разделяю).

Электролиз широко применяется на практике:

1. покрытие поверхности металла тонким слоем другого металла (никелирование, хромирование, омеднение и т.п.) – защита от коррозии;

2. изготовление металлических копий рельефной поверхности;

Читайте также:  Как заполнять водой систему отопления закрытого типа

3. очистка металлов от примесей;

4. получение газов промышленным способом;

5. электрополировка поверхностей.

Закон электролиза впервые был установлен экспериментально Фарадеем и носит название закона электролиза Фарадея: масса вещества, выделившегося на электроде при прохождении электрического тока, прямо пропорциональна заряду q, прошедшему через электролит.

m = kq, где k – коэффициент пропорциональности между массой вещества и зарядом, называемый электрохимическим эквивалентом вещества. k= , где Nа – постоянная Авогадро, М – молярная масса вещества, n – валентность вещества, а отношение называется химическим эквивалентом вещества.

Из формулы закона электролиза видно, что коэффициент k численно равен массе вещества, выделившегося на электродах при переносе ионами заряда, равного 1 Кл. Таким образом, единица измерения 1кг/Кл. Значение k для различных веществ можно найти в таблице.

Билет № 15

Электрический ток в газах. Самостоятельный и несамостоятельный разряды. Плазма

Газы в обычных условиях почти полностью состоят из нейтральных молекул или атомов и, следовательно, являются диэлектриками. Ионизированные газы являются проводниками.

Различают несколько способовионизации газа:

1. Термоионизация – под воздействием высоких температур;

2. Фотоионизация – под воздействием излучений;

3. Ударная ионизация – при столкновении быстрых частиц между собой.

Вследствие ионизации часть атомов распадается на положительно заряженные ионы и электроны. В газе могут образовываться и отрицательные ионы, которые появляются благодаря присоединению электронов к нейтральным атомам. Рекомбинация – процесс, обратный ионизации. Таким образом, носителями тока в газах являются электроны, положительные ионы и отрицательные ионы.

Электрическим током в газах называют упорядоченное положительных ионов к катоду, отрицательных ионов и электронов – к катоду. Явление прохождения электрического тока в газах по-другому называют газовым разрядом.

Рассмотрим вольт-амперную характеристику (ВАХ) газового разряда.

Пусть с помощью какого-либо ионизатора в газе в единицу времени образуется определенное число пар заряженных частиц: положительных ионов и электронов.

Участок ОА: при небольшой разности потенциалов между электродами не все образующиеся ионы и электроны достигают электродов, часть их рекомбинирует; по мере увеличения разности потенциалов число заряженных частиц, достигающих электродов, увеличивается – сила тока линейно возрастает.

Участок АВ: наступает момент, при котором все заряженные частицы, образующиеся в газе за единицу времени, достигают за это время электродов – ток достигает насыщения.

Если действие ионизатора на участках ОА и АВ прекратить, то прекратится и разряд, так как других источников носителей тока нет. Электрический ток, протекающий под действием внешнего ионизатора, называют несамостоятельным газовым разрядом.

Участок ВС: если продолжать увеличивать разность потенциалов на электродах, то с некоторого значения сила тока снова начнет резко возрастать, т.к. начнется:

1) ионизация электронным ударом (свободные электроны становятся настолько быстрыми, что при столкновениях с нейтральными атомами ионизируют их);

2) эмиссия (испускание) электронов с катода (быстрые положительные ионы выбивают с поверхности катода электроны).

Если действие ионизатора на участке ВС прекратить, то разряд не прекратится. Электрический ток, протекающий без действия внешнего ионизатора, называют самостоятельным газовым разрядом.В зависимости от свойств и состояния газа, а также характера и расположения электродов возникают различные виды самостоятельного разряда в газах:

Процесс перехода несамостоятельного газового разряда в самостоятельный называется электрическим пробоем и характеризуется напряжением пробоя.

Плазма– это частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически совпадают.

Различают высокотемпературную >10 5 K и низкотемпературную 5 K плазму. Проводимость плазмы увеличивается по мере роста степени ионизации. При высокой температуре полностью ионизированная плазма по своей проводимости приближается к сверхпроводникам. В состоянии плазмы находится около 99% вещества Вселенной (звезды, Солнце, межзвездная среда). Плазмой окружена и наша планета: верхний слой атмосферы на высоте 100-30 км – ионосфера, выше ионосферы – радиационные пояса Земли.

Источник ЭДС

Источник ЭДС характеризуется тем, что электродвижущая сила в нем не зависит от тока. Тогда напряжение на его зажимах будет определяться как:

В идеальном источнике ЭДС, внутреннее сопротивление rвн = 0, а ЭДС e = const, поэтому напряжение на зажимах не зависит от тока в нагрузке. В реальном источнике, внутреннее сопротивление хотя и мало, но все же присутствует, поэтому имеется слабая зависимость напряжения от тока

Читайте также:  Сушить белье на балконе приспособления

ЭДС — энергетическая характеристика источника. Это физическая величина, равная отношению работы, совершенной сторонними силами при перемещении электрического заряда по замкнутой цепи, к этому заряду: Измеряется в вольтах (В).

6).Закон ома для замкнутой цепи- будет равен отношению электродвижущей силы источника к сумме внешнего и внутреннего сопротивлений.

Короткое замыкание (КЗ) — электрическое соединение двух точек электрической цепи с различными значениями потенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Короткое замыкание может возникать в результате нарушения изоляции токоведущих элементов или механического соприкосновения неизолированных элементов. Также коротким замыканием называют состояние, когда сопротивление нагрузки меньше внутреннего сопротивления источника питания.

При коротком замыкании резко и многократно возрастает сила тока, протекающего в цепи, что, согласно закону Джоуля — Ленца приводит к значительному тепловыделению, и, как следствие, возможно расплавление электрических проводов, с последующим возникновением возгорания и распространением пожара.

7. Работа электрического тока показывает, какая работа была совершена электрическим полем при перемещении зарядов по проводнику

Зная две формулы:

I = q/t . и . U = A/q

можно вывести формулу для расчета работы электрического тока:

Мощность электрического тока показывает работу тока, совершенную в единицу времени

и равна отношению совершенной работы ко времени, в течение которого эта работа была совершена.

8.)Выделение тепла при прохождении электрического тока. При

прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается.

Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Ленца — Джоуля. Его формулируют следующим образом. Количество выделенного тепла Q равно произведению квадрата силы тока I 2 , сопротивления проводника R и времени t прохождения тока через проводник:

9.)Не следует путать с Принципом Керкгоффса.

Правила Кирхгофа — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного, переменного и квазистационарного тока. Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач в теории электрических цепей и практических расчётов сложных электрических цепей. Применение правил Кирхгофа к линейной электрической цепи позволяет получить систему линейных уравнений относительно токов или напряжений, и соответственно, найти значение токов на всех ветвях цепи и все межузловые напряжения.

1)Первое правило Кирхгофа гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла — отрицательным: Алгебраическая сумма токов, направленных к узлу равна сумме направленных от узла

2)Второе правило Кирхгофа (правило напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений на всех ветвях, принадлежащих любому замкнутому контуру цепи, равна алгебраической сумме ЭДС ветвей этого контура. Если в контуре нет источников ЭДС (идеализированных генераторов напряжения), то суммарное падение напряжений равно нулю

10.) Явление испускания свободных электронов с поверхности нагретых тел называется термоэлектронной эмиссией

Термоэлектронная эмиссия используется в различных электронных приборах. Простейший из них — электровакуумный диод. Этот прибор состоит из стеклянного баллона, в котором находятся два электрода: катод и анод. Анод изготовлен из металлической пластины, катод — из тонкой металлической проволоки, свернутой в спираль. Концы спирали укреплены на металлических стержнях, имеющих два вывода для подключения в электрическую цепь. Соединив выводы катода с источником тока, можно вызвать нагревание проволочной спирали катода проходящим током до высокой температуры. Проволочную спираль, нагреваемую электрическим током, называют нитью накала лампы

Триод. Потоком электронов, движущихся в электронной лампе от катода к аноду, можно управлять с помощью электрических и магнитных полей. Простейшим электровакуумным прибором, в котором осуществляется управление потоком электронов с помощью электрического поля, является триод. Баллон, анод и катод вакуумного триода имеют такую же конструкцию, как и у диода, однако на пути электронов от катода к аноду в триоде располагается третий электрод, называемый сеткой. Обычно сетка — это спираль из нескольких витков тонкой проволоки вокруг катода

11.)Газы становятся проводниками лишь тогда, когда они каким-то образом ионизированы. Процесс ионизации газов заключается в том, что под действием каких-либо причин от атома отрывается один или несколько электронов. В результате этого вместо нейтрального атома возникают положительный ион и электрон

Читайте также:  Мышонок из фетра выкройка

Электрический ток в газах — это направленное движение ионов и электронов

Несамостоятельный разряд – это разряд, который зависит от наличия ионизатора

Если после достижения насыщения продолжать увеличивать разность потенциалов между электродами, то сила тока при достаточно большом напряжении станет резко возрастать .Это означает, что в газе появляются дополнительные ионы сверх тех, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи раз, а число заряженных частиц, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Поэтому ионизатор можно теперь убрать. Поскольку разряд не нуждается для своего поддержания во внешнем ионизаторе, его называют самостоятельным разрядом.

12.) Плазма — частично или полностью ионизированный газ, образованный из нейтральных атомов (или молекул) и заряженных частиц (ионов и электронов). Важнейшей особенностью плазмы является ее квазинейтральность, это означает, что объемные плотности положительных и отрицательных заряженных частиц, из которых она образована, оказываются почти одинаковыми. Плазма иногда называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества

Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления — типичное свойство плазмы). Математически это условие можно выразить так:

r_D^3 N gg 1 ,, где

N — концентрация заряженных частиц.

Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на её поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:

Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания.[8] Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими.

Уже сейчас плазма широко применяется в разнообразных газоразрядных приборах: стабилизаторах напряжения, выпрямителях электрического тока, генераторах сверхвысоких частот и прочих. Кроме этого, беспрестанно ведутся разработки плазменных двигателей, призванных заменить реактивные, а также есть несколько готовых проектов плазменных электростанций, которые будут гораздо производительнее и безопаснее чем атомные.

Электрический ток в электролитах. Электролиз и его применение.

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы.

Основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований. Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.

Закон электролиза был экспериментально установлен английским физиком М. Фарадеем в 1833 году.

Электролизом называется окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через раствор или расплав электролита.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *