Установка индукционного нагрева труб

Индукционный нагрев трубопроводов в полевых условиях

Дата публикации: 19.06.2013

При низких температурах позволяет уменьшить вязкость транспортируемых веществ и обеспечить работоспособность этих трубопроводов. При эксплуатации газопроводов возможно образование конденсата и его замерзание, при том также необходим обогрев.

Подогрев труб может осуществляться горячей водой или паром. Экономические расчеты показывают, что при обогреве трубопроводов паром необходимы значительные капитальные затраты и высокие эксплуатационные расходы. Отечественная и зарубежная практика показывают, что при электрическом нагреве трубопроводов капитальные затраты в 1,5 раза меньше, чем при нагреве паром.

В настоящее время, например электрический нагрев, находит все большее применение при эксплуатации водоводов в условиях севера. Кроме того, электрический нагрев позволяет просто регулировать температуру, а конструкции систем электрического нагрева трубопроводов проще, чем конструкции нагрева паром.

Электронагрев трубопроводов может осуществляться тремя способами: косвенный нагрев сопротивлением, прямой резистивный нагрев, индукционный нагрев.

Косвенный нагрев

Для косвенного нагрева используют специальные нагревательные кабели, рассчитанные на работу при высоких температурах (до 650°С), или электронагреватели сопротивления (нагревательные ленты). Электрически выгоднее размещать кабель нагревателя внутри трубы, однако это не всегда целесообразно и возможно по технологическим соображениям.

При размещении нагревателя снаружи велики тепловые потери (температура нагревательных элементов выше температуры нагреваемой трубы) поэтому необходима теплоизоляция нагревателя. в связи с тем, что при косвенном нагреве температура нагреваемых элементов существенно превышает температуру нагреваемой трубы, такие нагреватели отличаются повышенной электро -, пожаро- и взрывоопасностью, что является существенным недостатком косвенного электронагрева трубопроводов.

Прямой нагрев

При прямом нагреве электрический ток пропускается по трубе. Хотя при этом не требуются специальные нагревательные кабели, ввиду малого сопротивления трубы, а также в соответствии с требованиями техники безопасности необходимо применять пониженное напряжение, т.е. применять трансформаторы, что приводит к удорожанию устройства. Кроме того, недостатком прямого злектронагрева является наличие электрического потенциала на оборудовании.

Индукционный нагрев

Индукционный нагрев характеризуется выделением тепла в проводящем нагреваемом объекте и бесконтактной передачей энергии, поэтому применение индукционного нагрева трубопроводов во многих случаях оказывается предпочтительным.

Если нагреваемый объект из металла поместить в электромагнитное поле проводника, по которому проходит переменный ток, то в объекте по закону электромагнитной индукции будут индуктироваться вихревые токи, вызывающие разогрев объекта. При этом проводник, по которому пропускается переменный электрический ток, называют индуктирующим проводом. Индуктирующему проводу конструктивно может быть придана любая форма в зависимости от типа нагреваемого объекта. Чаще всего-это цилиндрическая спираль. Устройство, выполненное на основе индуктирующего провода, называется индуктором.

Следует особо подчеркнуть тот факт, что наибольшее использование электромагнитной энергии будет в том случае, если коэффициент мощности индуктора будет равен единице. Этого можно добиться, если параллельно индуктору подключить компенсирующую батарею конденсаторов. Компенсирующая батарея конденсаторов и индуктор образуют нагрузочный колебательный контур, в котором реактивная энергия, запасенная в магнитном поле индуктора, передается конденсаторам, переходя в энергию электрического поля. В качестве источника питания нагрузочного колебательного контура используется высокочастотный генератор, например, тиристорный преобразователь частоты.

Процесс нагрева трубопровода в полевых условиях может быть осуществлен с помощью всепогодной индукционной установки, представленной на рис. 1.

На рис. 2 приведена ее компоновка, причем высокочастотный генератор 1, согласующий трансформатор 2, компенсирующая батарея конденсаторов 3 и контроллер 6, – устанавливаются в автофургоне, что делает установку мобильной.

Индуктирующий провод наматывается снаружи трубопровода 5, образуя цилиндрический индуктор 4, зашунтированный компенсирующей батареей конденсаторов 3 и подключается к высокочастотному генератору 1 через согласующий трансформатор 2.

Согласующий трансформатор 2 выполняет две важные функции, во-первых, оптимальное согласование параметров высокочастотного генератора 1 с параметрами нагрузочного контура 2-3, а во-вторых, обеспечивает гальваническую развязку индуктора 4 с генератором 1, повышая безопасность обслуживания. Управление режимом технологического процесса осуществляется с помощью контроллера 6.

В настоящее время у нас имеется возможность провести полевые испытания на реальном нефтепроводе, используя имеющуюся передвижную индукционную установку.

Читайте также:  Содержание кур несушек зимой в теплице

Область применения

Установка индукционного нагрева труб используется для гиба труб, а также для нанесения различной изоляции на трубы, при ремонте: для снятия защитной изоляции с элементов трубопроводов.

Диаметры трубы

Наши индукторы нагрева труб, позволяют нагревать трубы до 2000 мм в диаметре.

Марки стали

Марки стали применяемые при индукционном нагреве труб:

08Х17Н16М3Т, 10Х17Н13М2Т Ст3сп, 10 15ХМ, 18Х3М3, 18ХГ 20, 10Г2, 09Г2С 15Х5, 12Х1МФ, 30ХМА, 15Х5М 08Х18Н10Т, 12Х18Н10Т

Предлагаем услуги по индукционному гнутью труб, чтобы узнать подробности звоните/оставляйте заявку.

Индукционный нагрев (Induction Heating) — метод бесконтактного нагрева токами высокой частоты (англ. RFH — radio-frequency heating, нагрев волнами радиочастотного диапазона) электропроводящих материалов.

Индукционный нагрев – это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно – это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Применение:
Сверхчистая бесконтактная плавка, пайка и сварка металла.
Получение опытных образцов сплавов.
Гибка и термообработка деталей машин.
Ювелирное дело.
Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
Поверхностная закалка.
Закалка и термообработка деталей сложной формы.
Обеззараживание медицинского инструмента.

Высокоскоростной разогрев или плавление любого электропроводящего материала.

Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.

Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева — эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал — металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.

За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе — так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).

Читайте также:  Лестница между двух стен в доме

Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.

Удобство эксплуатации за счёт небольшого размера индуктора.

Индуктор можно изготовить особой формы — это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.

Легко провести местный и избирательный нагрев.

Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).

Лёгкая автоматизация оборудования — циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.

Установки индукционного нагрева:

На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах.

Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.

Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:
– повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
– применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.

Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.

Схема генератора может быть в принципе любой (мультивибратор, RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.

Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.

Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.

На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли, генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.

Недостатки трёх точки:

Низкий кпд (менее 40 % при применении лампы).

Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являются фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.

Читайте также:  Домокомплекты из профилированного клееного бруса от производителя

При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.

При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.

Под руководством Бабата, Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.

Недостаток многоконтурных систем — повышенная сложность и возникновение паразитных колебаний УКВ-диапазона, которые бесполезно рассеивают мощность и выводят из строя элементы установки. Также такие установки склонны к затягиванию колебаний — самопроизвольному переходу генератора с одной из резонансных частот на другую.

Современные твч-генераторы — это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать

а) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.

Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания – заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается – это может привести к "разносу" генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).

Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).

Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).

При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.

При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка — дуги).

Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов.
Параллельный колебательный контур – резонанс токов.
В этом случае на катушке и на конденсаторе напряжение такое же, как у генератора. При резонансе, сопротивление контура между точками разветвления становится максимальным, а ток (I общ) через сопротивление нагрузки Rн будет минимальным (ток внутри контура I-1л и I-2с больше чем ток генератора).

В идеальном случае полное сопротивление контура равно бесконечности – схема не потребляет тока от источника. При изменение частоты генератора в любую сторону от резонансной частоты полное сопротивление контура уменьшается и линейный ток (I общ) возрастает.

Последовательный колебательный контур – резонанс напряжений.

Главной чертой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. (ZL + ZC – минимум). При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает.
Вывод:
В параллельном контуре при резонансе ток через выводы контура равен 0, а напряжение максимально.
В последовательном контуре наоборот – напряжение стремится к нулю, а ток максимален.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *